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Unsteady turbulence in stably and unstably stratified flow with system rotation around
the vertical axis is analysed using the rapid distortion theory (RDT). Complete linear
solutions for the spectra, variances and covariances are obtained analytically, and
their characteristics, including the short- and long-time asymptotics and the effect
of initial conditions, are examined in detail. It has been found that the rotation
modifies the energy partition among the three kinetic energy components and the
potential energy, and the ratio of the Coriolis parameter f to the Brunt–Väisälä
frequency N, i.e. f/N, determines the final steady values of these components. The
ratio also determines the phase of the energy/flux oscillation. Depending on whether
f/N > 1 or f/N < 1, there is a phase shift of ±π/4. However, unsteady aspects are
largely dominated by stratification. This occurs because the effects of the Coriolis
parameter f appear only in the form of fk3, which vanishes for the horizontal
wavenumber components (k3 = 0), which contribute most to the energies and the
fluxes. For example, the oscillation frequency of the energies and the fluxes asymptotes
to 2N over a long time, in agreement with the stratified non-rotating turbulence. The
initial time development is also dominanted by the stratification, and the short-
time asymptotics (Nt, ft� 1) agree with those for non-rotating stratified fluids in
the lowest-order approximation. In the special case of f = N, all the wavenumber
components oscillate in phase, leading to no inviscid decay of oscillation. This is in
contrast to the general case of f 6= N, in which inviscid decay has been observed. For
pure rotation (f 6= 0, N = 0), analytical solutions showed that any turbulence that
is initially axisymmetric around the rotation axis recovers exact three-dimensional
isotropy in the kinetic energy components. Comparison with previous DNS and
experiments shows that many of the unsteady aspects of the kinetic and potential
energies and the vertical density flux can be explained by the linear processes described
by RDT. Even the time development of the vertical vorticity, which would represent
the small-scale characteristics of turbulence, agrees well with DNS. For unstably
stratified turbulence, the initial processes observed in DNS and experiments, such
as the initial decay of the kinetic energy due to viscosity and the subsequent rapid
growth of the vertical kinetic energy compared to the horizontal kinetic energy, could
be explained by RDT.

1. Introduction
There have been many studies on stably stratified turbulence. The first direct nu-

merical simulation (DNS) was carried out by Riley, Metcalfe & Weissman (1981);
it showed the importance of unsteadiness in stratified turbulence. They also pro-
posed the notion of wave/vortex decomposition which is based on the Helmholtz
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decomposition of an arbitrary vector, and which decomposes the velocity into vortex
components with vertical vorticity and wave components with only horizontal vor-
ticity. If time is scaled by the eddy overturning time and approximate hydrostatic
balance is assumed, the governing equations reduce to the equations which describe
the vortex components with only horizontal motion in the limit of small Froude
number (Fr → 0) (McWilliams 1995; Embid & Majda 1996, 1998; Riley & Lelong
2000). Since then, there have been many DNS studies, including those by Métais &
Herring (1989), Gerz & Yamazaki (1993), Kimura & Herring (1996) and Staquet &
Godeferd (1998). The notion of wave/vortex decomposition explained qualitatively
the DNS results by Métais & Herring (1989) for finite Fr(6= 0), in which only the
internal wave mode oscillated, while the vortex mode simply decayed due to viscosity
and diffusion.

In laboratory experiments, Komori et al. (1983) found a counter-gradient density
flux, a vertical turbulent flux in the opposite direction to the flux due to the molecular
diffusion, which makes the turbulent diffusion coefficient negative. Itsweire, Helland &
Van Atta (1986), Lienhard & Van Atta (1990), Yoon & Warhaft (1990) and Komori
& Nagata (1996), among others, investigated in detail the time development of the
kinetic and potential energies, vertical density flux and their spectra.

These results all showed the peoriodic oscillation of the vertical density flux.
Hunt, Stretch & Britter (1988) used rapid distortion theory (RDT) which is a linear
theory, and succeeded in predicting the oscillation of the energies and the fluxes.
Hanazaki & Hunt (1996) solved the RDT equation analytically and showed that
the periodic oscillation is the result of linear buoyant oscillation. They also showed,
by applying the method of steepest descents/stationary phase, that the decaying
oscillation observed in DNS and experiments occurs even in an inviscid fluid. This is
because the wavenumber components with different directions have different periods
of oscillation and only the horizontal wavenumber components (k3 = 0) with vertical
fluid motion at the slowest frequency N contribute to the energy/flux over a long
time. Similar phenomenon in the context of diffusion were later called phase mixing
by Kaneda & Ishida (2000).

The previous RDT results have shown the importance of initial conditions, such
as the initial ratio of kinetic energy to potential energy, in determining the subse-
quent time development of stratified turbulence. They explained the difference in the
direction and amplitude of the vertical density flux observed in the DNS (e.g. Gerz &
Yamazaki 1993; Métais & Herring 1989) where the different initial energy ratio gave
different subsequent time developments. Hanazaki & Hunt (1996) found, as an excep-
tion, that the long-time asymptotics of the ratio of the potential energy to the vertical
kinetic energy ER (→ 3/2 as t → ∞) is independent of the initial conditions. They
also found that higher Prandtl number Pr generally gives stronger counter-gradient
heat flux. This is also in agreement with the experiments which showed that for high
Prandtl number flows, such as thermally stratified water flow (Pr = 6) or stratified
salt water (Pr = 600), the counter-gradient flux was generally larger than in the wind
tunnel experiments for heated air (Pr = 0.7). The RDT also succeeded in predicting
the characteristics of the unsteady spectral behaviour which depend on the Prandtl
number.

The suppression of vertical diffusion has been investigated by Kaneda & Ishida
(2000) using the vertical velocities obtained by RDT to calculate the Eulerian and the
Lagrangian two-time velocity correlations. They found good agreement with DNS
under the condition of strong stratification. The characteristics of stratified turbulence
with mean shear have also been investigated by Hanazaki & Hunt (2001).
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Rotating turbulence has also been studied extensively. This includes the DNS
by Bardina, Ferziger & Reynolds (1985), which showed the conservation of initial
isotropy in rotating turbulence and the RDT studies by Cambon & Jacquin (1989),
which investigated the effects of initial anisotropy on the time development of rotating
turbulence. They found in their numerical solutions of the linearized equations that
initially axisymmetric turbulence returns to isotropy in the energy components, while
the anisotropy in the length scales increases with time. More recent studies include
those by Cambon et al. (1994), Cambon, Mansour & Godeferd (1997) and Salhi &
Cambon (1997).

On the other hand, studies of stratified rotating turbulence are relatively few.
Bartello (1995) and Métais et al. (1996) utilized the wave/vortex decomposition in the
analysis of DNS data for stratified rotating turbulence and investigated the nonlinear
energy-transfer mechanisms. Bartello (1995) also investigated the time development
of the kinetic and potential energy for Pr = 1 in decaying turbulence, which can be
compared with the RDT results in this study. Recently Iida & Nagano (1999) and
Tsujimura, Iida & Nagano (1998) investigated the same system using DNS for the
case with rapid rotation, the results of which are compared in detail with the RDT
results in this study. They also used some RDT solutions for the spectral components
to explain the DNS results.

In this study we extend the results of Hanazaki (2000) where some inviscid results
are obtained and solve the RDT equations as analytically as possible to theoretically
clarify the essential mechanisms governing the transport processes in stratified rotating
turbulence. We first obtain the most general analytical RDT solutions and use them
to calculate the three-dimensional spectra, then integrate them to obtain the variances
and covariances such as the vertical density flux and the kinetic/potential energies for
initially isotropic and axisymmetric turbulence. We then investigated the asymptotic
behaviour of those quantities and compared the results with DNS and experiments to
clarify the heat/density transport mechanisms in stably stratified rotating turbulence.

To investigate the mechanisms which contribute to the fluxes, the energies, the
three-dimensional and one-dimensional spectra observed in DNS and experiments,
analytical integrations of the Fourier componemts are very useful. By examining
the characteristics of the integral representations, we can identify which components
contribute most to these quantities. This has been demonstrated in Hanazaki & Hunt
(1996, 2001) for stratified turbulence with and without mean shear. While the linear
theory often has limitations in its applicability, if the analytical expressions can be
obtained, they are useful guides for both the DNS and the experiments. Thorough
knowledge of the linear mechanisms could become the starting point for the studies
of weak nonlinearity and then strong nonlinearity.

2. RDT equations
We consider a homogeneous turbulent flow with vertical density stratification

(dρ̄/dx3) and system rotation around the vertical axis. The governing equations in
the rotating frame under the Boussinesq approximations are

∂u

∂t
+ (u · ∇)u+ 2Ω× u = − 1

ρ0

∇p− gx̂3

ρ

ρ0

+ ν∇2u, (2.1)

∂ρ

∂t
+ (u · ∇)ρ+ u3

dρ̄

dx3

= κ∇2ρ, (2.2)

and

∇ · u = 0, (2.3)



160 H. Hanazaki

where ρ is the density perturbation from ρ̄(x3), u is the velocity fluctuation,Ω=(0, 0, Ω)
denotes the angular velocity of the system rotation, g is the accerelation due to gravity,
x̂3 is the unit vector in the vertical upward direction, ρ0 is the representative density,
and ν and κ are the viscosity and diffusion coefficient respectively.

We linearize the above equations and introduce the following spectral decomposi-
tions (Batchelor & Proudman 1954; Townsend 1976):

ui =
∑
k

ûi(k, t)e
ik·x (i = 1, 2, 3), (2.4)

and
g

ρ0

ρ =
∑
k

ρ̂(k, t) eik·x. (2.5)

We then obtain a set of ordinary differential equations (RDT equations) to be
solved: (

d

dt
+ νk2

)
ûi +

(
δij − kikj

k2

)
εj3lfûl =

(
kik3

k2
− δi3

)
ρ̂, (2.6)

and (
d

dt
+ κk2

)
ρ̂ = N2û3, (2.7)

where f = 2Ω is the Coriolis parameter (twice the angular velocity Ω) and N is the
Brunt–Väisälä frequency defined by N2 = −(g/ρ0)(dρ̄/dx3).

We should note that in the above formulation the wavenumber does not change
with time when there is no mean shear, i.e.

dki
dt

= 0, (2.8)

so that
k(t) = k(0) = (k1, k2, k3). (2.9)

It is important to note the conditions for which the RDT in stably stratified
rotating flow is valid. They are given by the conditions that the nonlinear term (u ·∇)u
(u = (u1, u2, u3), |u| = O(u)) in the Navier–Stokes equations is small compared to either
the buoyancy term gρ/ρ0 (Derbyshire & Hunt 1993) or the Coriolis term 2Ω× u. At
the same time the term (u · ∇)ρ must be small compared to u3dρ̄/dx3 in the equation
for the density.

Using the eddy size l and its characteristic velocity u(l), the nonlinear term is
expressed as

|(u · ∇)u| = O

(
u2

l

)
,

while the buoyancy term is (cf. Hanazaki & Hunt 1996)†
g

ρ0

ρ = O(uN2t) (if Nt, ft� 1 (cf . § 4.3)),

= O(uN)

(
if Nt > 1 or ft > 1 (cf . § 4.4.1, eq. (4.21)), and

f

N
< 1

)
,

= O

(
uN

(
N

f

)1/2
)(

if Nt > 1 or ft > 1, and
f

N
> 1

)
,

† Here, the estimation of (g/ρ0)ρ was obtained using the RDT solutions given in § 4. Therefore,
the applicability conditions of RDT obtained here are the necessary conditions rather than the
sufficient conditions.
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and the Coriolis term is

2Ω× u = O(fu).

Then, at large times (Nt > 1 or ft > 1), if f/N < 1 is satisfied, Fr l(≡ u/Nl)� 1 or
Ro l(≡ u/fl) = Fr l(N/f) � 1, i.e. Fr l � 1 is the necessary condition for the validity
of (2.6). On the other hand, if f/N > 1, Fr l(f/N)1/2 = Ro l(f/N)3/2 � 1 or Ro l � 1,
i.e. Ro l � 1 is the necessary condition for the validity of (2.6).

Using the estimation for the buoyancy term, the buoyancy advection term becomes

(u · ∇)ρ = O

(
uNt

dρ̄

dx3

)
(if Nt, ft� 1 (cf. § 4.3)),

= O

(
u
u

Nl

dρ̄

dx3

)(
if Nt > 1 or ft > 1 (cf . § 4.4.1), and

f

N
< 1

)
,

= O

(
u
u

Nl

(
f

N

)1/2
dρ̄

dx3

)(
if Nt > 1 or ft > 1, and

f

N
> 1

)
.

Then comparison with u3dρ̄/dx3 = O(udρ̄/dx3) gives that at large times (Nt > 1 or
ft > 1), if f/N < 1, Fr l � 1 is the condition for the validity of (2.7) and if f/N > 1,
Ro l(f/N)1/2 � 1 is the condition for the validity of (2.7).

Therefore, the applicabitity conditions for which both (2.6) and (2.7) are valid are

Fr l � 1 (if f/N < 1),

Ro l

(
f

N

)1/2

= Fr l

(
N

f

)1/2

� 1 (if f/N > 1).

Thus, if the stratification is dominant (f/N < 1), Fr l � 1 is the applicability
condition of RDT, but if the rotation is dominant (f/N > 1), Fr l is not necessarily
small but Ro l must be very small for the validity of RDT. This suggests at the same
time that in the limit of weak stratification (N → 0), it becomes difficult to satisfy
Ro l(f/N)1/2 � 1, implying that the parameter region of applicability at small Ro l
might be narrower for pure rotating flows, although for those flows, the equation for
the density does not exist and the applicability condition becomes just Ro l � 1. If we
denote the length scale and the velocity scale of energy-containing eddies by l0 and
u0(= u(l0)) respectively, the inverse of the time scale of each eddy with length scale l
becomes

u

l
= O

(
u0

l0

)
(at low and moderate Re),

= O(ε1/3l−2/3) (at high Re, where ε is the local turbulence energy dissipation rate).

Then, if we define the turbulent Froude number Fr(≡ u0/Nl0) and the turbulent
Rossby number Ro(≡ u0/fl0) based on the energy-containing eddies, we have at low
and moderate Re(≡ u0l0/ν),

Fr l ∼ Fr and Ro l ∼ Ro,

but at high Re,

Fr l ∼ ε1/3

Nl2/3
∼ Fr

(
l0

l

)2/3

and Ro l ∼ ε1/3

fl2/3
∼ Ro

(
l0

l

)2/3

.
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The above applicability conditions can be rewritten using Fr and Ro and they
become at low and moderate Re

Fr � 1

(
if
f

N
< 1

)
,

or

Ro

(
f

N

)1/2

= Fr

(
N

f

)1/2

� 1

(
if
f

N
> 1

)
,

while at high Re they become

Fr

(
l0

l

)2/3

� 1

(
if
f

N
< 1

)
,

or

Ro

(
l0

l

)2/3(
f

N

)1/2

= Fr

(
l0

l

)2/3(
N

f

)1/2

� 1

(
if
f

N
> 1

)
.

Therefore, at high Re, in addition to the above restrictions on the value of f/N,
there is a restriction on the eddy size. In laboratory experiments and DNS for low-
or moderate-Re flows, RDT is valid for low values of Fr or Ro(f/N)1/2. On the other

hand, at high Re, for the smaller scales of turbulence with l/l0 < Fr3/2(f/N < 1)

or l/l0 < Ro3/2(f/N)3/4(f/N > 1), RDT is not valid at small scales even if Fr �
1(f/N < 1) or Ro(f/N)1/2 � 1 (f/N > 1) is satisfied.

It would be helpful to discuss the above criteria in more detail for the non-rotating
case so that the comparison with the previous studies on time and length scales is
clearer. The condition Fr l � 1 is equivalent to the ‘time’ scale relation l/u � N−1,
which shows that the eddy overturning time is much larger than the buoyancy time
scale, and the eddy is affected significantly by stratification. This can be also rewritten
as a ‘length’ scale relation l � (ε/N3)1/2(≡ Lo, the Ozmidov scale or eddy overturning
scale), under the assumption that the high-Reynolds-number relation ε = u(l)3/l
(=const) still holds even at scales for which the turbulence is affected by stratification.
Then, if the energy-containing scale is larger than the Ozmidov scale (l0 � Lo), we
can expect that the energy-containing eddies are significantly affected by stratification.
The equivalent condition Fr � 1, which can be derived by assuming ε = u3

0/l0, is the
condition for which linear theory gives a good approximation in the evaluation of the
energies and the fluxes even when the small scales (l < Lo, i.e. Fr l > 1) are affected
by the nonlinear effects.

In previous studies and reviews on strongly stratified turbulence, Riley et al. (1981),
Riley & Lelong (2000) and other authors who extended their results (e.g. Lilly 1983;
McWilliams 1985; Embid & Majda 1996, 1998; Babin et al. 1997) have used the
eddy overturning time l0/uH (uH : horizontal velocity scale (∼ u0)) as the time scale
and also assumed the approximate hydrostatic balance gρ/ρ0 = O((1/ρ0)∂p/∂x3) to
estimate the density fluctuations ρ, and then derived the diagnostic equations for
the vortex components. These scalings at the same time lead to the estimation of
the vertical velocity as u3 = O(uHFr2), which becomes very small compared to the
horizontal velocity (u3/uH = O(Fr2) � 1) at low Froude numbers (Fr � 1). In the
limit of Fr → 0 the governing equations reduce to the horizontally two-dimensional
Navier–Stokes equations with vertical variability, i.e. with dependence on the vertical
coordinate.

Another set of equations for the internal waves can also be derived by using a
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different scaling for time (t = O(N−1)), which leads to the estimation of the vertical
velocity as u3 = O(uH ), giving the same order as the horizontal velocity (e.g. Riley
& Lelong 2000). In the limit of Fr → 0 the internal wave equations become linear,
showing that the wave components would be dominated by linear mechanisms when
Fr � 1. These two equations for the vortex and wave components are quite important
and useful to qualitatively understand the two major aspects of stratified turbulence,
namely the waves and the vortices.

Since the vortex component equations have a nonlinear horizontal advection term
even in the limit of Fr → 0, nonlinear effects are important in the horizontal motion if
the vortex components are dominant over the wave components. In a DNS for rotating
stratified (N = f) turbulence (Bartello 1995), the energy spectra of the geostrophic
(vortex) mode showed an inverse cascade just like two-dimensional turbulence, while
those of the ageostrophic (wave) mode decayed at all scales.

On the other hand, the vertical velocity does not become so small in RDT and DNS
which contain both the wave and vortex modes, even when Fr � 1. The key difference
is the hydrostatic balance which is not assumed in RDT and DNS. If the hydrostatic
balance holds and the vortex components dominate at the same time, the vertical
velocity would be very small compared to the horizontal velocity when Fr � 1. Then,
we may assume that RDT significantly overestimates the vertical velocity. However,
Hanazaki & Hunt (1996) showed that the RDT gives better agreement with the DNS
by Gerz & Yamazaki (1993) for stronger stratification, i.e. for smaller Fr , in the
energy partition among the three kinetic energy components.

For initially isotropic turbulence without initial density perturbations, DNS by
Métais & Herring (1989, cf. their figure 13) gives PE/KE = 0.27 at large times
(Nt ∼ 300, (l0/u0)t ∼ 30) and at a small Froude number (Fr ∼ 0.1), where PE
is the turbulent potential energy associated with the density fluctuations and KE
is the turbulent kinetic energy. Under these conditions, the scaling for the vortex
component equations as described above gives u2

3/u
2
H ∼ Fr4 = O(10−4), while RDT

gives PE/KE = 1/3 (Nt → ∞, Hanazaki & Hunt 1996). Since the potential energy
PE and the wave mode energy EW asymptote to almost equal values irrespective of
the initial energy partitions (Métais & Herring 1989), we can put PE/KE equal to
EW/KE. Then, both the potential energy and the wave mode energy are predicted
by RDT within errors of < 20%. The vertical kinetic energy VKE is usually of the
same order as the potential energy, and the vertical velocity also would not be very
small. Then, the quantitative applicability of the scaling assumed to derive the vortex
component equations becomes questionable at least in comparison with the DNS.

However, further quantitative comparisons with laboratory experiments, DNS and
field observations are necessary to investigate the roles and the relative importance
of the wave components and the vortex components. The hydrostatic balance might
be better satisfied in the large-scale real atmosphere and ocean compared to the
laboratory experiments and the DNS. If the hydrostatic balance holds, it may lead
to a smaller vertical velocity. In the atmosphere and the ocean, it is still uncertain
which components dominate since different observations give different results (Van
Zandt 1982; Cho, Newell & Barrick 1999; see the introduction of Riley & Lelong
2000). Since RDT does not describe the nonlinear aspects of the vortex component
equations, which may exist even when Fr � 1, there might arise a question about
the applicability condition of RDT described above (i.e. Fr � 1), but the scaling
argument used for the derivation of the vortex component equations is qualitative
and not quantitative as discussed above; thus the scaling itself should be tested
before quantitative discussion. Quantitative comparison of the solutions of the vortex
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component equations with DNS or experiments has yet to be performed. To quantify
the applicability of RDT, solution of the RDT equations in the Craya–Herring frame,
where wave/vortex decomposition occurs automatically, is also desirable. Direct
comparison with the DNS results will help clarify to what extent the wave mode is
linear and the vortex mode is nonlinear. These subjects are now under investigation
by the present author.

In the solutions of the horizontally two-dimensional Navier–Stokes equations with
vertical variability, Majda & Grote (1997) have shown the vertical collapse of the
columnar vortices into pancake structures due to viscous diffusion by the vertical
shear. In their simulations, interactions between different horizontal wavenumber
components are not included. More recently Galmiche & Hunt (2001) used RDT to
show the initial formation of the vertical shear and density layers in decaying stratified
turbulence. These results suggest that the nonlinear advection term in the horizontal
momentum equation is important in upscale energy transfer to generate larger eddies,
but the final decaying and layering processes might be the linear diffusive processes
(Pearson & Linden 1983; Hanazaki & Hunt 1996).

3. Inviscid fluid
3.1. Calculation of spectra

We first consider inviscid fluid with ν = κ = 0. In solving the RDT equations (2.6)–
(2.7), we first write the equations in matrix form and calculate the eigenvalues and
eigenvectors of the coefficient matrix. The four eigenvalues are 0 (degenerated) and
±ia, with

a =
(N2(k2

1 + k2
2) + f2k2

3)1/2

k
. (3.1)

Equation (3.1) is exactly the dispersion relation of the inertial gravity wave:
the eigenvalue 0 corresponds to the non-propagating potential vorticity modes
(geostrophic modes) and ±ia correspond to the inertial gravity wave modes (Bartello
1995; Riley & Lelong 2000).

The two eigenvectors for eigenvalue 0 are

V 1 =


k2

−k1

0

fk3

 , (3.2)

and

V 2 =


0

1

f2k2k3/(N
2(k2

1 + k2
2))

−fk1k3/(k
2
1 + k2

2)

 , (3.3)

and the eivenvectors for eigenvalues ±ia are

V 3 =


fk2 + iak1

−fk1 + iak2

−ia(k2
1 + k2

2)/k3

−N2(k2
1 + k2

2)/k3

 , (3.4)
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and

V 4 =


fk2 − iak1

−fk1 − iak2

ia(k2
1 + k2

2)/k3

−N2(k2
1 + k2

2)/k3

 . (3.5)

Then, the RDT equations (2.6)–(2.7) give the following general solutions for ûi(t)
(i = 1, 2, 3) and ρ̂(t):

ρ̂ = ρ̂0

[
cos at+

f2k2
3

a2k2
(1− cos at)

]
+
N2

a
û30 sin at+

fN2k3

a2k2
(1− cos at)(k2û10 − k1û20),

(3.6)

û1 = û10

[
1 +

f2k2
3

a2k2
(cos at− 1)− fk1k2k

2
3

ak2(k2
1 + k2

2)
sin at

]
+ û20

fk2
1k

2
3

ak2(k2
1 + k2

2)
sin at

+ û30

[
N2k1k3

a2k2
(1− cos at)− fk2k3

a(k2
1 + k2

2)
sin at

]
+ ρ̂0

[
fk2k3

a2k2
(1− cos at) +

k1k3

ak2
sin at

]
, (3.7)

û2 = −û10

fk2
2k

2
3

ak2(k2
1 + k2

2)
sin at+ û20

[
1 +

f2k2
3

a2k2
(cos at− 1) +

fk1k2k
2
3

ak2(k2
1 + k2

2)
sin at

]
+ û30

[
N2k2k3

a2k2
(1− cos at) +

fk1k3

a(k2
1 + k2

2)
sin at

]
+ ρ̂0

[
fk1k3

a2k2
(cos at− 1) +

k2k3

ak2
sin at

]
, (3.8)

û3(t) = û30 cos at+
fk3

ak2
(k2û10 − k1û20) sin at− k2

1 + k2
2

ak2
ρ̂0 sin at, (3.9)

where k denotes |k|, the subscript 0 denotes the initial values, and we have used the
incompressibility condition kiûi0 = 0 to simplify the expressions. The solutions for ρ̂
and û3 without initial density fluctuations (ρ̂0 = 0) have been obtained by Iida &
Nagano (1999).

Then we can calculate all the three-dimensional spectrum functions. In this study
we assume that the initial density fluxes are zero, i.e.

Φρi(k, 0) = 1
2
ρ̂∗0û30 + ρ̂0û

∗
30 = 0 (i = 1, 2, 3). (3.10)

The results are

Φρ3(k, t) = 1
2
ρ̂∗û3 + ρ̂û∗3

= −k
2
1 + k2

2

k2a

[
cos at+

f2k2
3

k2a2
(1− cos at)

]
sin atΦρρ(k, 0) +

N2

2a
Φ33(k, 0) sin 2at

+
f2N2k2

3

a3k4
(k2

2Φ11(k, 0) + k2
1Φ22(k, 0)− 2k1k2Φ12(k, 0))(1− cos at) sin at

+
fN2k3

a2k2
(k2Φ13(k, 0)− k1Φ23(k, 0)) (cos at− cos 2at), (3.11)
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Φ11(k, t) = Φ11(k, 0)

[
1 +

f2k2
3

a2k2
(cos at− 1)− fk1k2k

2
3

ak2(k2
1 + k2

2)
sin at

]2

+ 2Φ12(k, 0)

[
1 +

f2k2
3

a2k2
(cos at− 1)− fk1k2k

2
3

ak2(k2
1 + k2

2)
sin at

]
fk2

1k
2
3

ak2(k2
1 + k2

2)
sin at

+ 2Φ13(k, 0)

[
1 +

f2k2
3

a2k2
(cos at− 1)− fk1k2k

2
3

ak2(k2
1 + k2

2)
sin at

]

×
[
N2k1k3

a2k2
(1− cos at)− fk2k3

a(k2
1 + k2

2)
sin at

]

+Φ22(k, 0)
f2k4

1k
4
3

a2k4(k2
1 + k2

2)2
sin2 at

+ 2Φ23(k, 0)
fk2

1k
2
3

ak2(k2
1 + k2

2)
sin at

[
N2k1k3

a2k2
(1− cos at)− fk2k3

a(k2
1 + k2

2)
sin at

]

+Φ33(k, 0)

[
N2k1k3

a2k2
(1− cos at)− fk2k3

a(k2
1 + k2

2)
sin at

]2

+Φρρ(k, 0)

[
fk2k3

a2k2
(1− cos at) +

k1k3

ak2
sin at

]2

, (3.12)

Φ33(k, t) = Φ33(k, 0) cos2 at+
f2k2

3

a2k4
sin2 at(k2

2Φ11(k, 0) + k2
1Φ22(k, 0)− 2k1k2Φ12(k, 0))

+
(k2

1 + k2
2)2

a2k4
sin2 atΦρρ(k, 0)

+
2fk3

ak2
sin at cos at (k2Φ13(k, 0)− k1Φ23(k, 0)) , (3.13)

Φρρ(k, t) = Φρρ(k, 0)

[
cos at+

f2k2
3

a2k2
(1− cos at)

]2

+
N4

a2
sin2 atΦ33(k, 0)

+
f2N4k2

3

a4k4
(1− cos at)2(k2

2Φ11(k, 0) + k2
1Φ22(k, 0)− 2k1k2Φ12(k, 0))

+
2fN4k3

a3k2
sin at(1− cos at) (k2Φ13(k, 0)− k1Φ23(k, 0)) , (3.14)

where we have used kiΦij = kjΦij = 0 derived from the incompressibility condition
kiûi0 = 0.

It would be useful to mention here general relations among the three-dimensional
spectra directly derived from (2.6) and (2.7), applicable to fluid with viscosity and
diffusion: (

d

dt
+ 2νk2

)∑
i

Φii = −2Φρ3, (3.15)
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d

dt
+ 2κk2

)
Φρρ = 2N2Φρ3. (3.16)

These relations are the same as in flow with pure stratification (N 6= 0, f = 0),
and when integrated in spectral space, they show that the exchange between the total
kinetic energy and the potential energy is achieved exclusively by the vertical density
flux ρu3 even when there is a system rotation.

There are several more complicated relations which include rotation effects (f)
explicitly, i.e.(

d

dt
+ 2νk2

)
Φij =

[(
kikn

k2
− δin

)
Φlj +

(
kjkn

k2
− δjn

)
Φli

]
εn3lf

+

(
kik3

k2
− δi3

)
Φρj +

(
kjk3

k2
− δj3

)
Φρi, (3.17)

(
d

dt
+ (ν + κ)k2

)
Φρi =

(
kikj

k2
− δij

)
Φρlεj3lf +

(
kik3

k2
− δi3

)
Φρρ +N2Φi3. (3.18)

When f = 0, these relations reduce to the non-rotating results by Hanazaki &
Hunt (1996).

4. Initially isotropic turbulence
4.1. Initial conditions

We consider turbulence under stable stratification (N2 > 0) in this section and § 5. In
addition, since the turbulence is usually initially isotropic in laboratory experiments
for grid turbulence and in most of the DNS, we first consider initially isotropic
turbulence in this section. The initial conditions for the three-dimensional spectra are
given by

Φij(k, 0) =
E(k)

4πk2

(
δij − kikj

k2

)
(4.1)

and

Φρρ(k, 0) =
S(k)

4πk2
2N2, (4.2)

where

KE0 =

∫ ∞
0

E(k) dk (4.3)

and

PE0 =
1

2N2

∫
Φρρ(k, 0) dk =

∫ ∞
0

S(k) dk, (4.4)

are the initial turbulent kinetic and potential energy.
We now write the wavenumber vector in spherical coordinates as

k1 = k sin θ cosφ, k2 = k sin θ sinφ, k3 = k cos θ, (4.5)

so that

k2 = k2
1 + k2

2 + k2
3 , (4.6)
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and

sin θ =
(k2

1 + k2
2)1/2

k
=
kH

k
, (4.7)

where kH is the horizontal wavenumber defined by

kH = (k2
1 + k2

2)1/2. (4.8)

The frequency a defined by (3.1) can be rewritten as

a2 = f2 cos2 θ +N2 sin2 θ. (4.9)

4.2. Variances and covariances

Using (3.11), we obtain the vertical density flux as

ρu3(t) =

∫
Φρ3(k, t)2πk

2 dk sin θ dθ

=
N2

2
E

(C)
0

∫ π

0

dθ
sin3 θ

a3
sin at(N2 sin2 θ cos at+ f2 cos2 θ), (4.10)

where E(C)
0 = KE0−2PE0 is the complementary energy which represents the deviation

from the equilibrium state of turbulence.
Other variances and covariances can be calculated similarly and the results are

u2
1(t) = u2

2(t) = 2
3
KE0 +

N2

8
E

(C)
0

∫ π

0

dθ
sin3 θ cos2 θ

a4

×(4f2 cos2 θ(cos at− 1) + (f2 −N2) sin2 θ(1− cos 2at)), (4.11)

u2
3(t) = 2

3
KE0 − N2

2
E

(C)
0

∫ π

0

dθ
sin5 θ

a2
sin2 at, (4.12)

and

ρ2(t) = 2N2PE0 +
N4

4
E

(C)
0

∫ π

0

dθ
sin3 θ

a4

(
N2 sin2 θ(1− cos 2at) + 4f2 cos2 θ(1− cos at)

)
.

(4.13)

We note that the sign of E
(C)
0 determines the direction of the oscillation. In

other words, the initial partition of energy between the kinetic and potential energy,
KE0/PE0 < 2 or > 2, determines the subsequent direction of the vertical density (heat)
transport at a specific time.

In the case of pure rotation (N = 0, f 6= 0), energy partition does not change

with time and u2
1(t) = u2

2(t) = u2
3(t) = 2

3
KE0 holds at all times. This recovers the

DNS results for initially isotropic rotating turbulence which retained initial isotropy
(Bardina et al. 1985) and also recovers the results from linear theory (Greenspan
1968; Cambon & Jacquin 1989).

On the other hand, in the case of pure stratification (f = 0, N 6= 0), the above
results reduce to those by Hanazaki & Hunt (1996).

We note finally that total turbulence energy is conserved in inviscid fluid, i.e.

KE(t) + PE(t) = 1
2
(u2

1 + u2
2 + u2

3) +
1

2N2
ρ2

= KE0 + PE0. (4.14)
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4.3. Short-time approximations

When both Nt� 1 and ft� 1 are satisfied, we obtain the short-time approximations
as

ρu3(t) = N2E
(C)
0 t( 2

3
− 16

45
(Nt)2 − 1

45
(ft)2 + O(t4)),

u2
1(t) = 2

3
KE0 − 1

4
E

(C)
0 (Nt)2( 4

15
− 16

315
(Nt)2 + 1

35
(ft)2 + O(t4)),

u2
3(t) = 2

3
KE0 + E

(C)
0 (Nt)2(− 8

15
+ 16

105
(Nt)2 + 8

315
(ft)2 + O(t4)),

ρ2(t) = 2N2PE0 + E
(C)
0 N2(Nt)2( 2

3
− 8

45
(Nt)2 − 1

90
(ft)2 + O(t4)). (4.15)

It is of interest here to note that the rotation effects represented by f appear only in
higher-order corrections of O(t3) or O(t4) and the dominant terms of the initial time
development are determined only by N. This means that even with the Coriolis effects,
the initial time development of turbulence is governed essentially by stratification. If
f � N, the higher-order terms which contain f can become large. However, in the
usual geophysical contexts, the rotation period of the Earth is much larger than the
buoyancy period (f � N). Therefore, at least in geophysical applications, the effect
of f would be negligible initially. The effects of rotation f becomes apparent at later
times.

The initial normalized vertical density flux ρu3/(ρ2
1/2
u2

3

1/2
) (Nt, ft → 0) obtained

from (4.15) is identical to that for non-rotating stratified turbulence. If there is no
initial kinetic energy (KE0 = 0), we obtain

ρu3

ρ2
1/2
u2

3

1/2
(Nt, ft→ 0) = −( 5

6
)1/2 = −0.913. (4.16)

This agrees with the results of DNS (Gerz & Yamazaki 1993) and RDT (Hanazaki
& Hunt 1996) for non-rotating stratified fluids. If there is no initial potential energy
(PE0 = 0), we obtain

ρu3

ρ2
1/2
u2

3

1/2
(Nt, ft→ 0) = 1, (4.17)

again in agreement with the non-rotating results (Hanazaki & Hunt 1996).
If we substitue f = 0 into (4.15), short-time approximations for the non-rotating

stratified turbulence (Hunt et al. 1988; Hanazaki & Hunt 1996) could of course be
recovered.

4.4. Long-time asymptotics

4.4.1. General case of N 6= f

When the Brunt–Väisälä frequency and the Coriolis parameter are not equal
(N 6= f), the dispersion relation of the gravity wave, i.e. (3.1) or (4.9), shows that
a depends on θ. In this case, examination of the integrals (4.10)–(4.13) shows that,
at large times (Nt� 1 or ft� 1), the most slowly oscillating components with θ
in the integrand, the component which satisfies ∂a/∂θ = 0, contribute most to the
integral. This is the essence of the method of stationary phase and it can be applied
to the present case as has been done for pure stratification (Hanazaki & Hunt 1996).
We should keep in mind that this method gives good approximations even when
the time is not very large, i.e. even for Nt, ft = O(1) (e.g. Hinch 1991). Since the
stationary phase θ0 = π/2 satisfies cos θ0 = 0, the rotation effects in the integrand
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cannot contribute significantly to the integral in the long-time limit, since the Coriolis
parameter f appears only in the form of f cos θ, i.e. it is always coupled with
cos θ(= 0). The angle of stationary phase θ0 = π/2 gives the horizontal wavenumber
vector (k3 = k cos θ0 = 0) and a = N, which means that the pure buoyant oscillation
with frequency N in the vertical plane contributes to the unsteadiness of the variances
and the covariances even in rotating fluids.

The long-time behaviours become

ρu3(t) =
N

4
E

(C)
0

(
πN

t|N2 − f2|
)1/2

sin
(

2Nt± π

4

)
, (4.18)

u2
1(t) = u2

2(t) = 2
3
KE0 + E

(C)
0

[
N2(23f2 − 2N2)

24(f2 −N2)2
− N2f2(3f2 + 4N2)

8(f2 −N2)3
IA

]
, (4.19)

u2
3(t) = 2

3
KE0 + E

(C)
0

[
N2(5f2 − 2N2)

6(f2 −N2)2
− N2f4

2(f2 −N2)3
IA

]

+ 1
4
E

(C)
0

(
πN

t|N2 − f2|
)1/2

cos
(

2Nt± π

4

)
, (4.20)

ρ2(t) = 2N2PE0 + E
(C)
0

[
−N

4(11f2 − 2N2)

4(f2 −N2)2
+
N4f2(5f2 + 4N2)

4(f2 −N2)3
IA

]

−N
2

4
E

(C)
0

(
πN

t|N2 − f2|
)1/2

cos
(

2Nt± π

4

)
, (4.21)

where

IA =

∫ 1

0

dx

x2 +N2/(f2 −N2)

=
(f2 −N2)1/2

N
tan−1 (f2 −N2)1/2

N
(f > N)

or

=
(N2 − f2)1/2

N
log

N − (N2 − f2)1/2

f
(f < N), (4.22)

and the sign ± represents + when f > N, and − when f < N.
As discussed above, vertically uniform components (k3 = 0) do not contribute to the

vertical density flux given by (4.18), and the vertical density transport is maintained
essentially by stratification even when rotation exists. The oscillation period 2π/2N
is the same as in the case of pure stratification (Hanazaki & Hunt 1996) and the
flux amplitude is modified only by the factor of (N2/|N2 − f2|)1/2 compared to the
non-rotating result. This is nearly equal to 1 when f � N, showing that rotation does
not contribute to the unsteady components of the vertical density (heat) flux in the
atmosphere and ocean, where typical values of f and N are f ≈ 7.3 × 10−5 s−1 and
N ≈ 10−2 s−1.

An important effect of rotation on the unsteadiness is that there is a ‘phase shift’
(±π/4) depending on the relative values of f and N, i.e. whether f > N or f < N. This
explains the apparent difference in the oscillation ‘period’ between the non-rotating
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results (N > f = 0) and other rapidly rotating results (f > N) observed in DNS (cf.
§ 9, figure 1).

We note that, if f � N is satisfied, the energy ratio ER = PE/VKE of the potential
energy to the vertical kinetic energy becomes approximately

ER =
ρ2/(2N2)

u2
3/2

→ 3
2
(Nt� 1), (4.23)

as in the case of pure stratification (Hanazaki & Hunt 1996), although weak de-
pendence on f might be observed when f 6= 0. This value roughly agrees with the
observed value of ER = 1.0± 0.3 in the atmosphere (Nieuwstadt 1984; Hunt, Kaimal
& Gaynor 1985).

It is clear from (4.19)–(4.21) that the final ‘steady’ values of the energy components
depend on the ratio of the Coriolis parameter f to the Brunt–Väisälä frequency N,
i.e. f/N, in addition to the initial kinetic energy KE0 and the initial potential energy
PE0. Bartello (1995) performed DNS for decaying stratified rotating turbulence under
the conditions N = 5.3, f = 8.7, PE0 = 0 and Pr = 1. Although hyperviscosity was
used and no information on the initial spectral forms were given in that paper, we
can calculate long-time asymptotics of the ratio of kinetic energy to the potential
energy KE/PE (t → ∞) by inviscid RDT as long as Pr = 1 holds, since the
viscosity/diffusion effects are cancelled out in the analytical expression of KE/PE,
as is clear from the formulations described later in § 6. Substituting f/N = 1.64 and

PE0 = 0 into (4.19)–(4.21), we obtain the long-time limit values as u2
1 = u2

2 = 0.54KE0,

u2
3 = 0.44KE0 and PE = (1/2N2)ρ2 = 0.24KE0. Then we obtain KE/PE(t→ ∞) = 3.2

(and ER(t → ∞) = 1.1), in good agreement with the DNS results which gave
KE/PE(t→∞) ∼ 3.0 (figure 5 of Bartello 1995).

4.4.2. Special case of N = f

As is clear from the above expressions (4.18)–(4.21), the method of steepest descents
cannot be applied when N = f. In this case the dispersion relation for the inertial
gravity wave gives a = N = f, showing that the group velocity of the wave is zero
and the wave energy does not propagate. However, the exact solution becomes
much simpler and the integration can be done exactly to give the variances and the
covariances at an arbitrary time. The results are

ρu3(t) = 2
15
NE

(C)
0 (sinNt+ 2 sin 2Nt), (4.24)

u2
1(t) = u2

2(t) = 2
3
KE0 + 2

15
E

(C)
0 (cosNt− 1), (4.25)

u2
3(t) = 2

3
KE0 + 4

15
E

(C)
0 (cos 2Nt− 1), (4.26)

and

ρ2(t) = 2N2PE0 + 4
15
N2E

(C)
0 (2− cosNt− cos 2Nt). (4.27)

We note that, when N = f, oscillations in the variances and the covariances do
not decay with time in contrast to the case of N 6= f.† In this case, a(= N = f) is
independent of θ so that all the spectral components oscillate with the same period
2π/N(= 2π/f) independent of the direction of the wavenumber, as do the three-
dimensional spectra. Thus there is no phase difference which leads to the inviscid

† After submission of this paper we noticed that similar results have been obtained by Kaneda
(2000) for diffusion problems in stratified rotating turbulence.
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decay of oscillations (Hanazaki & Hunt 1996; Kaneda & Ishida 2000), and the
energies never reach constant values in inviscid fluid.

It is also of interest to note that u2
1(= u2

2) contains only the cosNt component and
not sin 2Nt or cos 2Nt, showing that the horizontal kinetic energy oscillates slower
than the vertical kinetic energy and the potential energy. As will be discussed later,
the slow oscillation with frequency N has been observed in DNS (see § 9, figure 2)
when the initial turbulence is anisotropic and N = f is satisfied. It is not the result

of the initial anisotropy but because N = f. The results for u2
1 (= u2

2) and ρ2 show
that energy exchange occurs at lower frequency N exclusively between the horizontal
kinetic energy and the potential energy, without any explicit participation of the
vertical kinetic energy. On the other hand, the high-frequency energy exchange at
frequency 2N, as in the general case of f 6= N, occurs between the vertical kinetic
energy and the potential energy.

5. Initially axisymmetric turbulence
5.1. Initial conditions

Since pure rotation does not affect the horizontal and vertical kinetic energy partition
for initially isotropic turbulence, it is of interest to see what occurs for initially ax-
isymmetric turbulence in stratified rotating fluids. If we assume initially axisymmetric

and purely horizontal turbulence which satisfies u2
1(0) = u2

2(0)(= KE0) and u2
3(0) = 0,

the initial three-dimensional spectra for the Reynolds stresses with zero helicity are
(Herring 1974; Schumann & Patterson 1978)

Φ11(k, 0) =
E(k)

2πk2
sin2 φ, (5.1)

Φ12(k, 0) = −E(k)

2πk2
sinφ cosφ, (5.2)

Φ22(k, 0) =
E(k)

2πk2
cos2 φ, (5.3)

and

Φ13(k, 0) = Φ23(k, 0) = Φ33(k, 0) = 0. (5.4)

The initial density perturbation spectrum is

Φρρ(k, 0) =
S(k)

4πk2
2N2. (5.5)

5.2. Energies

Using (3.12)–(3.14), the three-dimensional spectra can be obtained and the energy
components are

u2
1(t) = u2

2(t) = 1
2
KE0

∫ π

0

dθ
sin θ

a4

[(
a2 + f2 cos2 θ(cos at− 1)

)2
+ a2f2 cos4 θ sin2 at

]
+
N2

2
PE0

∫ π

0

dθ
sin3 θ cos2 θ

a4

[
f2(1− cos at)2 + a2 sin2 at

]2
, (5.6)

u2
3(t) = f2KE0

∫ π

0

dθ
sin3 θ cos2 θ

a2
sin2 at+N2PE0

∫ π

0

dθ
sin5 θ

a2
sin2 at, (5.7)
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ρ2(t) = f2N4KE0

∫ π

0

dθ
sin3 θ cos2 θ

a4
(1− cos at)2

+N2PE0

∫ π

0

dθ

[
cos at+

f2 cos2 θ

a2
(1− cos at)

]2

. (5.8)

In contrast to initially isotropic turbulence, even without stratification (N = 0), pure
rotation modifies the partition between the horizontal and vertical kinetic energies.
When N = 0, the integration can be done exactly and the results will be given in
§ 5.3.2.

5.3. Long-time asymptotics

5.3.1. General case of N 6= f

In the general case of N 6= f the long-time approximations give

u2
1(t) = u2

2(t) = KE0

[
2

3
+
N2(17f2 + 4N2)

12(f2 −N2)2
− f2N2(f2 + 6N2)

4(f2 −N2)3
IA

]

+PE0

[
N2(−23f2 + 2N2)

12(f2 −N2)2
+
f2N2(3f2 + 4N2)

4(f2 −N2)3
IA

]
, (5.9)

u2
3(t) = 2

3
KE0 + (KE0 − PE0)

N2(5f2 − 2N2)

3(f2 −N2)2
− (KE0 − PE0)

f4N2

(f2 −N2)3
IA

− 1
2
PE0

(
πN

t|N2 − f2|
)1/2

cos
(

2Nt± π

4

)
, (5.10)

and

ρ2(t) = 3
2
KE0f

2N4

[
− 3

(f2 −N2)2
+

f2 + 2N2

(f2 −N2)3
IA

]

+PE0

N2

2

[
4f4 + 3f2N2 + 2N4

(f2 −N2)2
− f2N2(5f2 + 4N2)

(f2 −N2)3
IA

]

+PE0

N2

2

(
πN

t|N2 − f2|
)1/2

cos
(

2Nt± π

4

)
(5.11)

where IA is again given by (4.22).
We note in (5.9)–(5.11) that the final steady values of the energy components

depend on the ratio of the Coriolis parameter f to the Brunt–Väisälä frequency N,
i.e. f/N, in addition to KE0 and PE0, as in the initially isotropic conditions. We also
note that, if stratification exists (N 6= 0), the final energy distribution is generally
anisotropic.

5.3.2. Special case of pure rotation (N = 0)

In the case of pure rotation (N = 0), the above expressions give the long-time limit
(t→∞) values as

u2
1(t) = u2

2(t) = 2
3
KE0,

u2
3(t) = 2

3
KE0,

ρ2(t) = 0,

 (5.12)
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showing the return to exact isotropy by the linear mechanism. However, the asymp-
totics obtained by the method of stationary phase cannot capture the time develop-
ment, which would decay faster than O(t−1/2).

The integrals in (5.6)–(5.8) can be calculated exactly. As noted by Mansour, Shih
& Reynolds (1991), the integrals of the form

In ≡
∫ π

0

dθ sin θ cosn θ cos(c cos θ) =

∫ 1

−1

dxxn cos(cx), (5.13)

where c = 2ft, can be calculated from the partial integral and the exact results are

I0 = 2
sin c

c
, (5.14)

and

I2 = 2
sin c

c
+ 4

cos c

c2
− 4

sin c

c3
. (5.15)

In general In(n = 2, 4, 6, . . .) can be calculated by the recursive relation

In =
2

c
sin c+

2n

c2
cos c− n(n− 1)

c2
In−2. (5.16)

The value of I4 is given in Mansour et al. (1991), and values of In for larger n
might become necessary for some specific initial conditions used, but we need only I0

and I2 here. Then, (5.6) and (5.7) become

u2
1(t) = u2

2(t) = 2
3
KE0 −KE0

(
cos 2ft

(2ft)2
− sin 2ft

(2ft)3

)
,

u2
3(t) = 2

3
KE0 + 2KE0

(
cos 2ft

(2ft)2
− sin 2ft

(2ft)3

)
.

 (5.17)

These allow decaying oscillations of the anisotropy tensor bij similar to those
observed in the DNS and RDT by Mansour et al. (1991) for initially anisotropic
rotating turbulence. Note that the leading-order time-dependent terms have decaying
oscillations whose amplitude decays like ∝ t−2, much faster than ∝ t−1/2 as observed
in (5.10) for stratified rotating turbulence. In the study of Mansour et al. (1991), the
anisotropy tensor bj decayed like ∝ t−1, which is slower than ours. The difference is
attributable to the different initial conditions, since their anisotropic initial condition
(Shih, Reynolds & Mansour 1990) did not assume axisymmetry of the turbulence.

We have calculated the higher-order asymptotics for the general case of N 6= f to
O(t−3/2) using higher-order steepest descents (Whitham 1974). The results give a term
proportional to

π1/2

2N1/2(|N2 − f2|t)3/2
sin
(

2Nt± π

4

)
, (5.18)

and terms with frequency 2f do not appear even at this higher order, since the
components with horizontal wavenumber (θ = π/2) become dominant as in the
leading-order term. These results show that the characteristics of the time development
in pure rotating turbulence have been changed significantly by stratification. This
corresponds to the fact that the wave character changes from inertial waves to gravity
waves.

It is of interest to note that the final isotropy of pure rotating turbulence is
independent of whether the initial turbulence was three-dimensionally isotropic or
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axisymmetric. Final anisotropy is purely the result of stratification. Since arbitrary
axisymmetric turbulence can be composed of the superposition of three-dimensional
isotropic turbulence and purely horizontal turbulence (Herring 1974), we can conclude
that any rotation (unstratified) turbulence initially axisymmetric around the rotation
axis finally returns to isotropy. In numerical solutions of RDT equations with viscosity,

Cambon & Jacquin (1989) showed that u2
3/u

2
1 tends to 0.9 for initial axisymmetric

expansion and to 1.2 for initial axisymmetric contraction. These long-time asymptotic
values show approximate return to isotropy, in agreement with the present analytical
results.

5.3.3. Special case of pure stratification (f = 0)

In the case of pure stratification (f = 0), (5.9)–(5.11) become

u2
1(t) = u2

2(t) = KE0 + 1
6
PE0,

u2
3(t) = 2

3
PE0 − 1

2
PE0

( π
Nt

)1/2

cos
(

2Nt− π

4

)
,

ρ2(t) = N2PE0 +
N2

2
PE0

( π
Nt

)1/2

cos
(

2Nt− π

4

)
.


(5.19)

These results show that, in pure stratified turbulence (f = 0), if the initial turbulence
is axisymmetric and two-dimensional, the two-dimensionality of velocity is conserved
and the initial horizontal kinetic energy can be converted neither to vertical kinetic
energy nor to potential energy. On the other hand, the initial potential energy is

equally partitioned between the kinetic energy (1/2)(u2
1 + u2

2 + u2
3) and the potential

energy (1/2N2)ρ2.

5.3.4. Special case of N = f

Similarly to initially isotropic turbulence, the method of steepest descents cannot
be applied when N = f. However, the exact solution can be obtained as

u2
1(t) = u2

2(t) = 11
15
KE0 + 4

15
PE0 + 4

15
(KE0 − PE0) cosNt, (5.20)

u2
3(t) = 2

15
(KE0 + 4PE0)(1− cos 2Nt), (5.21)

ρ2(t) = 2
15
N2KE0(3− 4 cosNt+ cos 2Nt) + 2

15
N2PE0(7 + 4 cosNt+ 4 cos 2Nt). (5.22)

We note again that, when N = f, oscillations in the variances and the covariances
do not decay with time, in contrast to the case of N 6= f, because all the wavenumber
components oscillate in phase, as discussed in the case of initially isotropic turbulence
(§ 4.4.2).

It is again of interest to note that the horizontal kinetic energy contains only the
slowly oscillating components and the energy exchange occurs at lower frequency N,
exclusively between the horizontal kinetic energy and the potential energy, without
any explicit participation of the vertical kinetic energy. On the other hand, the energy
exchange at high frequency 2N occurs exclusively between the vertical kinetic energy
and the potential energy.

6. Effects of viscosity and diffusion
When Pr = 1 (ν = κ), the solutions of RDT equations which include viscosity

and diffusion can be obtained simply by multiplying the spectral solutions (3.6)–
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(3.9) by exp(−νk2t) and multiplying the three-dimensional spectra (3.11)–(3.14) by
exp(−2νk2t). Since the value of a is not affected by viscosity and diffusion when
ν = κ, the integration by θ is unchanged. Thus the corresponding variances and
covariances can be obtained simply by replacing the radial integrals

KE0 =

∫ ∞
0

E(k) dk and PE0 =

∫ ∞
0

S(k) dk (6.1)

by ∫ ∞
0

E(k) exp(−2νk2t) dk and

∫ ∞
0

S(k) exp(−2νk2t) dk, (6.2)

respectively. For example when E(k) and S(k) are given by

E(k) = KE0

(
16

π

)1/2
k2

k3
0

exp(−k2/k2
0) and S(k) = PE0

(
16

π

)1/2
k2

k3
0

exp(−k2/k2
0),

(6.3)
as in most experiments, (6.2) becomes∫ ∞

0

E(k) exp(−2νk2t) dk =
KE0

(1 + 2νk2
0t)

3/2

and

∫ ∞
0

S(k) exp(−2νk2t) dk =
PE0

(1 + 2νk2
0t)

3/2
, (6.4)

and when E(k) and S(k) are given by

E(k) = KE0

(
2

9π

)1/2(
2

k0

)5

k4 exp(−2k2/k2
0)

and S(k) = PE0

(
2

9π

)1/2(
2

k0

)5

k4 exp(−2k2/k2
0), (6.5)

(6.2) becomes ∫ ∞
0

E(k) exp(−2νk2t) dk =
KE0

(1 + νk2
0t)

5/2

and

∫ ∞
0

S(k) exp(−2νk2t) dk =
PE0

(1 + νk2
0t)

5/2
. (6.6)

7. Unstable stratification
7.1. Variances and covariances

So far the analysis has been for stably stratified rotating turbulence. Now we consider
the unstably stratified case. When the stratification is unstable, the most unstable
mode grows fastest and would become dominant. Because of the exponential growth
of that mode, the turbulence energy will become large and the assumption of linearity
would break down in a short time. We also note that the unstable stratification
cannot sustain its initial vertical density distribution in DNS and experiments, while
the RDT assumes that the unstable stratification persists. This will also make a
significant difference in the results of RDT and DNS or experiments. However, it is
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still of some interest to know which mechanisms work in this transition. Therefore,
we give some results for unstable stratification here for later comparison with DNS
and experiments in § 9. The comparison will show that even for unstable stratifica-
tion, the agreement between RDT and DNS is good, at least for the initial time
development.

When the stratification is unstable (N2 < 0), the frequency a becomes pure imagi-
nary for

θ0 < θ < π− θ0, (7.1)

where

θ0 = tan−1

(
− f

2

N2

)1/2

(7.2)

satisfies 0 6 θ0 6 π/2.
Then for this region, we use

cos at = cosh(bt), sin at =
1

i
sinh(bt), (7.3)

where b = ia.
We consider in this section only initially isotropic turbulence and the variances and

covariances can be obtained by using (7.3) in the unstable region. The results are, for
example,

ρu3(t) =
N2

2
E

(C)
0

(∫ θ0

0

+

∫ π

π−θ0

)
dθ

sin3 θ

a3
sin at(N2 sin2 θ cos at+ f2 cos2 θ)

+
N2

2
E

(C)
0

∫ π−θ0

θ0

dθ
sin3 θ

b3
sinh bt(N2 sin2 θ cosh bt+ f2 cos2 θ). (7.4)

We should note here that θ0 → π/2 in the limit of −N2 → 0, and the integral for
the unstable region (7.1) vanishes, and when N2 > 0, we should use θ0 = π/2 in (7.4)
and other similar integrals.

Other variances and covariances can be obtained similarly by dividing the in-
tegration region into a stable (0 < θ < θ0, π − θ0 < θ < π) and an unstable
(θ0 < θ < π − θ0) region. Hereafter, we assume that the integration by θ in the
unstable region (θ0 < θ < π − θ0) should use the relation (7.3) although we do not
note this specifically.

7.2. Long-time asymptotics

When the stratification is unstable, the major contribution to the θ-integral comes
from the unstable components (near θ = π/2) and we obtain the asymptotic forms of
the integral as

ρu3(t) = − 1
8
|N2|3/4E(C)

0

(
π

t(|N2|+ f2)

)1/2

exp(2|N2|1/2t), (7.5)

u2
3(t) = 1

8
|N2|1/4E(C)

0

(
π

t(|N2|+ f2)

)1/2

exp(2|N2|1/2t), (7.6)

ρ2(t) = 1
8
|N2|5/4E(C)

0

(
π

t(|N2|+ f2)

)1/2

exp(2|N2|1/2t). (7.7)
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These show the exponential growth of the variances and the covariances. The
integral for the unstable region (θ0 < θ < π − θ0) becomes large with time and in
particular the components of θ = π/2 (θ0 6 π/2 6 π − θ0) become dominant in a
long time. Therefore, the horizontal wavenumber components contribute most to the
unsteadiness of the fluxes when the stratification is stable, and the same components

are dominant for the unstable stratification. Note here also that since PE0 = (1/2N2)ρ2
0

is negative, E(C)
0 is positive so that ρu3 < 0, u2

3 > 0 and ρ2 > 0. Since (7.5) includes
no oscillatory components, ρu3 does not change sign after a sufficiently long time has
elapsed.

From (7.5)–(7.7) we can calculate that the normalized vertical density flux in the
long-time limit as

ρu3

ρ2
1/2
u2

3

1/2
(t→∞) = −1, (7.8)

which will be compared with the DNS results in §9. We should note that this long-time
limit value is independent of E(C)

0 , i.e. independent of the initial conditions.

8. Vertical vorticity
The spectral component of the vertical vorticity ω̂3 is governed by the equation

dω̂3

dt
= ifk3û3. (8.1)

Here, the generation of vertical vorticity ω3 or vertical absolute vorticity ω3 + f is
due to the Coriolis force (f 6= 0). Without system rotation, vertical vorticity simply
decays through viscosity as can also be deduced directly from the linearized governing
equation (2.1).

Using (3.9), the solution for ω̂3 is obtained as

ω̂3 = i(k1û20 − k2û10) + ifk3

[
1

a
û30 sin at+

fk3

a2k2
(k2û10 − k1û20)(1− cos at)

+
k2

1 + k2
2

a2k2
ρ̂0(cos at− 1)

]
. (8.2)

Then the variance of the vertical vorticity for initially isotropic turbulence is

ω2
3(t) =

∫
Φω3ω3

dk =

∫
ω̂3ω̂

∗
3dk

= 1
4
ω2

0

∫ π

0

dθ
sin3 θ

a4
[(a2 − f2 cos2 θ(1− cos at))2 + a2f2 cos2 θ sin2 at]

+ f2N2

∫ ∞
0

dkk2S(k)

∫ π

0

dθ
sin5 θ cos2 θ

a4
(1− cos at)2, (8.3)

where

ω2
0 = ω2

10 + ω2
20 + ω2

30 = 2

∫ ∞
0

k2E(k) dk, (8.4)

denotes twice the initial enstrophy.
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When the stratification is unstable (N2 < 0), the long-time approximation is domi-
nated by the components of θ ≈ π/2 and (8.3) becomes

ω2
3(t) =

π1/2

32

f2

|N2|ω
2
0

1

(|N2|1/2t)3/2( 1
2

+ f2/|N2|)3/2
exp(2|N2|1/2t), (8.5)

assuming that there is no initial potential energy (S (k) = 0). This result is shown here
for later comparison with DNS in § 9 (figure 4).

We also consider here the effect of viscosity and diffusion for later comparison
with DNS. When Pr = 1, the result is rather simple. For example, when the energy

spectrum is given by (6.3), ω2
0 given by (8.4) should be simply replaced by

2

∫ ∞
0

dk k2 exp(−2νk2)E(k) = ω2
0

1

(1 + 2νk2
0t)

5/2
, (8.6)

in (8.3) and (8.5).

9. Comparison with DNS and experiments
The results will now be compared with DNS and some laboratory experiments.

For quantitative comparison with DNS, we should include the effects of viscosity and
diffusion. We show in this section the results of RDT for Pr = 1. Since the previous
DNS by Iida & Nagano (1999) was only for Pr = 0.71, a precise discussion of the
Prandtl number effects are difficult. In addition, the differences due to the different
Prandtl numbers are not so large as to affect the main results discussed in this section.
Therefore we show the results only for Pr = 1.

We should note that previous DNS has used rather low Reynolds numbers. In
Iida & Nagano (1999) the Reynolds number defined by Re = k2/(εν), where k is the
kinetic energy and ε is the energy dissipation rate, was below 20. As noted in § 2,
the low Reynolds numbers used in DNS will give better agreement with RDT than
high-Reynolds numbers, since the RDT is formally not applicable to small scales of
turbulence at high Re.

As regards the applicability condition of RDT, the Rossby number Ro = ε/fk used
by Iida & Nagano (1999) is Ro ∼ 0.1. Although the Froude number Fr = ε/Nk is
not given explicitly in their paper, their data show Fr ∼ 1. Thus the applicability
condition given in § 2 is marginally satisfied when f/N < 1 and is better satisfied when
f/N > 1 since Ro(f/N)1/2 = Fr(N/f)1/2 ∼ 0.3 < 1 with typical value of f/N = 10 in
their DNS.

As an initial energy spectrum E(k) we use (6.3) with k0 = 5, KE0 = 1 and also
assume PE0 = 0(S(k) = 0), unless otherwise stated. This means that the initial
turbulence is isotropic and has no density perturbations. As viscosity coefficient, we
have used ν(= κ) = 0.0243. All these conditions are the same as those in Iida &
Nagano (1999) and Tsujmura et al. (1998) except for the value of κ.

Figure 1 shows the time development of the vertical density flux in stably stratified
rotating turbulence. The RDT solutions given by (4.10) but modified by viscosity and
diffusion (Pr = 1 (ν = κ)) as given by (6.4) become

− 1

N2
ρu3(t) = − 1

2
E

(C)
0

∫ π

0

dθ
sin3 θ

a3
sin at(N2 sin2 θ cos at+ f2 cos2 θ)

1

(1 + 2νk2
0t)

3/2
,

(9.1)
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Figure 1. Time development of the vertical density flux −ρu3/N
2 for initially isotropic stably

stratified rotating turbulence. (a) RDT (Pr = 1): -----------------------, N = 2, f = 0; ————, N = 1, f = 10;
– – – –, N = 1, f = 20; — — —, N = 2, f = 10; –– · –– · ––, N = 2, f = 20; · · · · · · · · · · · ·, N = 2,
f = 40; –– ·· –– ·· ––, N = 4, f = 20; – – – –, PE0 = 4KE0, N = 2, f = 20. (b) DNS by Iida & Nagano
(1999) (Pr = 0.71): ————, N = 2, f = 0; •, N = 1, f = 10; N, N = 1, f = 20; �, N = 2,
f = 10; e, N = 2, f = 20; +, N = 2, f = 20 (solution of the linearized equations); 4, N = 2,
f = 40; �, N = 4, f = 20; 5, PE0 6= 0, N = 2, f = 20.

and the long-time asymptotics given by (4.18) in combination with (6.3) become

− 1

N2
ρu3(t) = − 1

4N
E

(c)
0

(
πN

t|N2 − f2|
)1/2

sin
(

2Nt± π

4

) 1

(1 + 2νk2
0t)

3/2
. (9.2)

The overall comparison between RDT and DNS is good. There is a phase difference
between the case of N = 2, f = 0 and all the other cases. When there is no rotation,
N > f is satisfied and the flux is proportional to sin(2Nt − π/4), showing phase
delay. On the other hand, when rapid rotation is imposed as in all the other cases,
N < f is satisfied and the flux is proportional to sin(2Nt + π/4), showing phase
advance. This is the reason why in Iida & Nagano (1999) the oscillation period
appeared to be longer in the non-rotating case. The theoretical prediction of zeros
by the long-time approximation are Nt/2π = 0.3125, 0.5625, . . . when f < N, and
Nt/2π = 0.1875, 0.4375, . . . when f > N. The time difference in zeros is 1/8 = 0.125.
Although the method of stationary phase is a long-time approximation and is formally



Stably and unstably stratified rotating turbulence 181

applicable only at large times it gives a good approximation even for Nt = O(1) as
already noted in § 4.4.1.

In the very initial time development, the flux behaves as given by (4.15). When
E

(C)
0 > 0 or KE0 > 2PE0 is satisfied, e.g. when there is no initial potential energy,
−ρu3 initially is negative, while if large PE0(> KE0/2) is applied, the flux is positive.
In one case (N = 2, f = 20), initial potential energy PE0 is not zero. However, the
values of PE0 or the functional form of S(k) are not given explicitly in Iida & Nagano
(1999). Therefore, we assumed that PE0 = 4KE0 and S(k) has the same form as E(k)
(cf. (6.3)). In that case the flux reverses its sign. As is noticable from (9.1) and (9.2),
this flux reversal persists for an indefinitely long time.

As shown in (4.15), the initial time development is determined only by N as a
first approximation, and the growth rate of the flux −ρu3/N

2 (for Nt/2π < 0.05) is
proportional to N−1 if we fix the time Nt. This is also discernible in figure 1. For
the same N, the initial time development almost agrees and the growth rate is indeed
proportional to N−1.

At later times (0.05 < Nt/2π < 0.2) the rotation effects begin to appear, but as
(9.2) suggests, the amplitude of the oscillation becomes approximately proportional
to f−1, provided f � N is satisfied as in the cases shown in figure 1. This is also
observed in figure 1(a, b), noting that three values are used for f (= 10, 20 and 40).
The results for f = 10 show the largest amplitude and the results for f = 40 show the
smallest amplitude. However, the rotation effect diminishes rapidly with time except
for its effect on the amplitude and the time oscillation period (= 2N) is equal to
twice the stratification parameter N as shown by (9.2). The amplitude difference for
different values of f (and N) after a long time is smaller in DNS than RDT. One
possible explanation is the effect of nonlinearity.

In figure 2 the effects of initial anisotropy (axisymmetric and purely horizontal
turbulence) on stably stratified rotating turbulence are shown for the case of no
initial potential energy (PE0 = 0). We should note, however, that the results given
here are for a special case of N = f and the exact RDT solutions are (5.20) and (5.21)
with the viscosity and diffusion effects (Pr = 1) given by (6.4), i.e.

u2
1(t) = u2

2(t) = [ 11
15
KE0 + 4

15
KE0 cosNt]

1

(1 + 2νk2
0t)

3/2
, (9.3)

and

u2
3(t) = 2

15
KE0(1− cos 2Nt)

1

(1 + 2νk2
0t)

3/2
. (9.4)

As noted in § 5.3.4, the horizontal kinetic energy u2
1(= u2

2) oscillates with frequency
N, in contrast to the other variances and covariances. This is clearly also seen in
the DNS results. However, it is important to note that this frequency difference is
due to the resonant condition N = f and not because of the initial anisotropy. Even
when the initial turbulence is isotropic, we found the same results as described in
§ 4.4.2.

We should note here that the decay of the amplitude with time when N = f is
purely a viscosity/diffusion effect and not due to the inviscid mechanism. When
a = N = f, all the wavenumber components in different directions (θ) oscillate in
phase. Therefore, if the fluid is inviscid, the amplitude does not decay with time, in
contrast to the general case of N 6= f. We also note that the linear results of DNS
and RDT show some differences which would be due to the difference in the Prandtl
number.
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Figure 2. Time development of the horizontal and vertical kinetic energy for initially axisymmetric
and purely horizontal stably stratified rotating turbulence with N = f(= 4). (a) RDT (Pr = 1):

– – – –, u2
1(= u2

2); ————, u2
3. (b) DNS by Tsujimura, Iida & Nagano (1998) (Pr = 0.71).

nonlinear: e, u2
1; 4, u2

2; �, u2
3. linear: •, u2

1; N, u2
2; �, u2

3. ‘Linear’ means the solution of the
linearized Navier–Stokes equations.

Figure 3 shows the time development of the normalized vertical density flux with un-

stable stratification with isotropic initial conditions. All the curves for −ρu3/(ρ2u2
3)

1/2

asymptote to 1 over a long time. RDT results (figure 3a) show the value calculated

by (7.4) for ρu3 and other similar expressions for ρ2 and u2
3. In the RDT results (fig-

ure 3a), Pr = 1 is used. For Pr = 1, the effects of viscosity and diffusion appear in the
same form (e.g. (1+2νk2

0t)
−3/2 as given by (6.4)) in all the variances and covariances of

the velocity and density. Therefore, the effects of viscosity and diffusion are cancelled
out by the denominator and the numerator in the normalized density flux. Thus the
RDT results for Pr = 1 actually agree with the inviscid results. For the long-time
development, the asymptotics of the RDT solution give (7.5)–(7.7), which shows that

−ρu3/(ρ2u2
3)

1/2 → 1(t� 1) as already given in (7.8). This again agrees with DNS for

PE0 = 0. We should recall here, as noted in § 7.2 that the value is independent of E(C)
0 ,

i.e. the initial condition.
In the DNS in figure 3(b) there are two lines for the same |N2|1/2/f but for different

values of |N2|1/2 and f. These two lines almost coincide. Examination of the RDT
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Figure 3. Time development of the normalized vertical density flux for initially isotropic
unstably stratified rotating turbulence. (a) RDT (Pr = 1): ————, |N2|1/2/f = 0.05;

– – – –, |N2|1/2/f = 0.1; –– · –– · ––, |N2|1/2/f = 0.2. (b) DNS by Iida & Nagano (1999)

(Pr = 0.71): 4, |N2|1/2 = 2, f = 40(|N2|1/2/f = 0.05); N, |N2|1/2 = 1, f = 20(|N2|1/2/f = 0.05);e, |N2|1/2 = 2, f = 20(|N2|1/2/f = 0.1); •, |N2|1/2 = 1, f = 10(|N2|1/2/f = 0.1); �, |N2|1/2 = 2,

f = 10(|N2|1/2/f = 0.2); �, |N2|1/2 = 4, f = 20(|N2|1/2/f = 0.2).

solutions for the normalized vertical density flux shows that it depends on at, f/a
and |N2|1/2/f. Since at is determined by ft and |N2|1/2/f except for θ, and f/a is
determined by |N2|1/2/f, the flux is determined only by |N2|1/2/f and ft. Thus, for
fixed ft, it is determined solely by |N2|1/2/f. The agreement of the two curves supports
the importance of the linear mechanisms, showing that there are no other parameters
which affect the normalized vertical density flux. Similar discussions apply to other
variances and covariances.

Figure 4 shows the time development of the vertical vorticity variance for initially
isotropic unstably stratified rotating turbulence. The RDT results in figure 4(a) show
the function given by (8.3) with S(k) = 0 since there is no initial potential energy
in DNS. Combined with the effects of viscosity and diffusion, the RDT results
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Figure 4. Time development of (ω2
3)1/2/(f/2) for initially isotropic unstably stratified rotating

turbulence. (a) RDT (Pr = 1): –– · –– · ––, |N2|1/2 = 2, f = 40(|N2|1/2/f = 0.05); -----------------------,

|N2|1/2 = 1, f = 20(|N2|1/2/f = 0.05); ————, |N2|1/2 = 2, f = 20(|N2|1/2/f = 0.1); – – – –,

|N2|1/2 = 1, f = 10(|N2|1/2/f = 0.1); –– ·· –– ·· ––, |N2|1/2 = 2, f = 10(|N2|1/2/f = 0.2); — — —,

|N2|1/2 = 4, f = 20(|N2|1/2/f = 0.2). (b) DNS by Iida & Nagano (1999) (Pr = 0.71):

4, |N2|1/2 = 2, f = 40(|N2|1/2/f = 0.05); N, |N2|1/2 = 1, f = 20(|N2|1/2/f = 0.05);e, |N2|1/2 = 2, f = 20(|N2|1/2/f = 0.1); •, |N2|1/2 = 1, f = 10(|N2|1/2/f = 0.1); �, |N2|1/2 = 2,

f = 10(|N2|1/2/f = 0.2); �, |N2|1/2 = 4, f = 20(|N2|1/2/f = 0.2).

corresponding to DNS (but with Pr = 1) are

ω2
3(t) = 1

4
ω2

0

∫ π

0

dθ
sin3 θ

a4
[(a2 − f2 cos2 θ(1− cos at))2 + a2f2 cos2 θ sin2 at]

× 1

(1 + 2νk2
0t)

5/2
. (9.5)

In the inviscid (ν = 0) case, the RDT results for the vertical vorticity are again
determined solely by ft and |N2|1/2/f. Then for fixed ft, the vertical vorticity variance

depends only on |N2|1/2/f. Thus, in figure 4 in which (ω2
3)1/2/(f/2) is plotted instead

of (ω2
3)1/2, the difference due to f should appear. Indeed, both in RDT and DNS, the

value of (ω2
3)1/2/(f/2) for the same |N2|1/2/f but for f twice as large shows is half
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Figure 5. Time development of the horizontal and vertical kinetic energy for initially isotropic
unstably stratified rotating and non-rotating turbulence (|N2|1/2 = 2, f = 20). (a) RDT (Pr = 1):

– – – –, u2
1(= u2

2) non-rotating; –– · –– · ––, u2
1(= u2

2) rotating; · · · · · · · · · · · ·, u2
3 non-rotating; ————,

u2
3 rotating. (b) DNS by Iida & Nagano (1999) (Pr = 0.71). Nonlinear, non-rotating: ————, u2

1;

– – – –, u2
2; · · · · · · · · · · · ·, u2

3. Nonlinear, rotating: •, u2
1; N, u2

2; �, u2
3. Linear, rotating: e, u2

1; 4, u2
2;

�, u2
3. ‘Linear’ means the solution of the linearized Navier–Stokes equations.

the value initially (t = 0). Over a long time, however, the two lines almost merge into
one. This is an accidental agreement due to the effect of viscosity and diffusion. At
large times, the difference (factor) due to f which can be determined from (8.5) and
(8.6) is

1

f(1 + 2νk2
0t)

5/4
≈ 1

f(2νk2
0t)

5/4
= f1/4(2νk2

0ft)
−5/4(νk2

0t� 1). (9.6)

For a fixed ft, the difference factor is only f1/4 = 21/4 = 1.189. Although this result
depends on the initial spectrum form of E(k) which determines the exponent −5/4 in
(9.6), the E(k) in experiments would usually be similar to the one used here. Therefore,
agreement is expected also in the experiments. We note also that the initial decay of
vertical vorticity is due to the viscosity and diffusion. Indeed, the inviscid RDT shows
a monotonic increase although the results are not presented here.

Figure 5 shows the time development of the kinetic energies for initially isotropic
unstably stratified rotating turbulence with no initial potential energy (PE0 = 0). The
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RDT results are plotted using equations (4.11) and (4.12) combined with the effect of
viscosity and diffusion given by (6.4), i.e.

u2
1(t) = u2

2(t) =

[
2
3
KE0 +

N2

8
KE0

∫ π

0

dθ
sin3 θ cos2 θ

a4
(4f2 cos2 θ(cos at− 1)

+ (f2 −N2) sin2 θ(1− cos 2at))

]
1

(1 + 2νk2
0t)

3/2
, (9.7)

u2
3(t) =

[
2
3
KE0 − N2

2
KE0

∫ π

0

dθ
sin5 θ

a2
sin2 at

]
1

(1 + 2νk2
0t)

3/2
. (9.8)

Initial decay is again due to the viscosity of the fluid. Inviscid RDT gives a monotonic
increase of both the horizontal and vertical kinetic energies. However, the viscosity
and diffusion contribute to the short-time approximation (4.15) by the factor

1

(1 + 2νk2
0t)

3/2
≈ 1− 3νk2

0t = 1− O(t) (νk2
0t� 1), (9.9)

showing that the viscosity effects appear in the leading-order correction to the kinetic
energies, compared to the effect of unstable stratification whose order is (Nt)2. Then,
in the initial time development, the effect of viscous damping appears first and then
the growth due to unstable stratification appears at later times. We should note
that the behaviour depends on the initial energy spectrum form and the viscosity
coefficient, but whatever the initial spectrum forms are, the viscous decay appears
at O(t), faster than unstable stratification effects. The initial decay is stronger in the

horizontal kinetic energy u2
1 than in the vertical kinetic energy u2

3. As is apparent in
(4.15), the coefficient of (Nt)2 which represents the effect of unstable stratification

is 1/15 for u2
1, while it is 8/15 for u2

3. Thus the growth is more significant in u2
3. In

experiments for non-rotating unstably stratified fluids Nagata & Komori (2000) (see
their figure 2a) found similar behaviour.

10. Conclusions
In this study we have solved the RDT equations for both stably and unstably

stratified rotating turbulence when the initial turbulence is either isotropic or axisym-
metric. The importance of the initial condition has been confirmed as in stratified
non-rotating turbulence. For example, the ratio of the initial potential energy to the
kinetic energy determines the direction of the vertical density flux, and in viscous flow,
the initial spectrum forms determine the decay rates of the energies and the fluxes.
We found good agreement with the previous DNS by Iida & Nagano (1999) in many
aspects and also with Bartello (1995) for the prediction of the energy partition.

The rotation modifies the energy partition among the kinetic energy components
and the potential energy, and the ratio of the Coriolis parameter f to the Brunt–
Väisälä frequency N, i.e. f/N, determines the final steady values, in combination
with the initial kinetic energy KE0 and the initial potential energy PE0. The final
steady value of KE/PE for the same parameters as used in DNS by Bartello (1995)
gave good agreement, confirming that the linear processes are dominant in decaying
stratified rotating turbulence.

However, the effects of rotation on the ‘unsteady’ aspects of the stratified turbulence
are not very large. The long-time asymptotics show that the energy components
and the fluxes oscillate at the same frequency 2N as the non-rotating stratified
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turbulence. This is because the Coriolis parameter f is always coupled with cos θ or
the vertical wavemumber k3 in the form of f cos θ or fk3, which vanishes for the
angle θ = π/2 dominantly contributing to the variances and the covariances. The
wavenumber direction that contributes most, i.e. the horizontal direction (k3 = 0) or
the barotropic mode, is the same as for non-rotating stratified turbulence. Therefore,
the stratification effects dominate in the unsteady aspects of turbulence even with the
system rotation.

Short-time approximations also show that very initial time development of the
energies and the fluxes are determined dominantly by stratification. Therefore, rotation
effects are significant for a relatively short time, as observed in the time development
of the vertical heat flux in DNS. These characteristics lead to the result that the
normalized vertical density flux for the short-time limit (t → 0) is the same as for
non-rotating stratified fluids.

Long-time-limit steady values of the energies and the fluxes of course depend
on the ratio of N and f. However, if f � N holds, as in the atmosphere and the
ocean, those asymptotic values agree approximately with the pure stratification results
(N 6= 0, f = 0) given by Hanazaki & Hunt (1996). For example, energy ratio ER, the
ratio of the potential energy to the vertical kinetic energy, approaches 3/2 over a long
time, irrespective of the initial conditions. One interesting effect of the ratio f/N is
that it determines the ‘phase’ of oscillation in the energy and the fluxes. If f/N > 1,
there is a phase advance (+π/4), while if f/N < 1, there is a phase delay (−π/4).

In the special case of N = f, the time oscillations of the energies and the fluxes
do not show inviscid decay like ∝ t−1/2 as observed in the general case of N 6= f,
which includes the case of pure stratification (f = 0) (Hanazaki & Hunt 1996). Thus
the energy components never reach constant values in inviscid fluid in this case. This
is because all the wavenumber components oscillate in phase, irrespective of their
directions so that the contributing components are not restricted to the horizontal
wavenumbers. We note that, in this case, the exchange between the horizontal kinetic
energy and the potential energy occurs at low frequency N, and the horizontal energies

u2
1 and u2

2 oscillate at that frequency. On the other hand, the energy exchange at the
normal high frequency 2N occurs exclusively between the vertical kinetic energy and
the potential energy.

In the case of pure rotation (f 6= 0, N = 0), the analytical solutions from RDT
showed that any turbulence that is initially axisymmetric around the vertical axis
returns to isotropy by linear mechanisms. This is in agreement with the DNS and the
numerical solutions of RDT equations with viscosity (Cambon & Jacquin 1989).

The normalized vertical density flux ρu3/(ρ2u2
3)

1/2 depends only on the parameter
|N2|1/2/f and time ft, and the results for different values of |N2|1/2 and f give the
same value in both the RDT and the DNS, supporting the dominance of the linear
processes.

The long-time r.m.s. value of the vertical vorticity divided by f/2, i.e. ω2
3/(f/2),

also depends almost only on the parameter |N2|1/2/f and time ft, independent of the
specific values of |N2|1/2 and f. This again has been observed in RDT and DNS, but
it could be explained in RDT solutions that it has been an accidental result due to
the viscosity/diffusion effects and with the specific initial energy spectral form.

It is of interest to note that the time development of even the small-scale charac-
teristics of turbulence as represented by vertical vorticity could be explaind well by
RDT, although further studies on the energy spectra would be necessary to pursue
this point.
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The RDT for unstably stratified results shows that the initial decay in the time
development of the kinetic energy components is due to viscosity effects which
become dominant initially and the growth due to unstable stratification appears at
later times. This also agrees with the DNS and the experiments. This shows that the
linear processes described by RDT are dominant at least for a relatively short time
before the exponential growth of turbulence due to instability and the subsequent
nonlinear saturation of the growth become dominant for |N2|1/2t > O(1).

We should note that the DNS data mainly used for comparison with RDT in this
study have been for low Reynolds numbers, which will make the comparison better.
As shown in § 2, the RDT is not applicable to the small scales at high Re. Thus,
in interpreting the results given in this study in the context of real atmosphere or
oceans, we should take care with the applicability conditions, since Re is usually very
high there.

We finally note that in DNS and in the theoretical RDT, the initial conditions are
usually restricted to idealized ones, such as isotropic turbulence. In real geophysical
contexts, the initial conditions are usually more complicated depending on how the
turbulence is generated. Therefore, care should be taken that results obtained under
idealized conditions are applicable only to those specific initial conditions.
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